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Combined genomics and proteomics unveils 
elusive variants and vast aetiologic 
heterogeneity in dystonia
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Dystonia is a rare disease trait for which large-scale genomic investigations are still underrepresented. Genetic het
erogeneity among patients with unexplained dystonia warrants interrogation of entire genome sequences, but this 
has not yet been systematically evaluated.
To significantly enhance our understanding of the genetic contribution to dystonia, we (re)analysed 2874 
whole-exome sequencing (WES), 564 whole-genome sequencing (WGS), as well as 80 fibroblast-derived proteomics  
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datasets, representing the output of high-throughput analyses in 1990 patients and 973 unaffected relatives 
from 1877 families. Recruitment and precision-phenotyping procedures were driven by long-term collaborations 
of international experts with access to overlooked populations.
By exploring WES data, we found that continuous scaling of sample sizes resulted in steady gains in the number of 
associated disease genes without plateauing. On average, every second diagnosis involved a gene not previously im
plicated in our cohort. Second-line WGS focused on a subcohort of undiagnosed individuals with high likelihood of 
having monogenic forms of dystonia, comprising large proportions of patients with early onset (81.3%), generalized 
symptom distribution (50.8%) and/or coexisting features (68.9%). We undertook extensive searches for variants in nu
clear and mitochondrial genomes to uncover 38 (ultra)rare diagnostic-grade findings in 37 of 305 index patients 
(12.1%), many of which had remained undetected due to methodological inferiority of WES or pipeline limitations. 
WGS-identified elusive variations included alterations in exons poorly covered by WES, RNA-gene variants, mito
chondrial-DNA mutations, small copy-number variants, complex rearranged genome structure and short tandem re
peats. For improved variant interpretation in WGS-inconclusive cases, we employed systematic integration of 
quantitative proteomics. This aided in verifying diagnoses related to technically challenging variants and in upgrad
ing a variant of uncertain significance (3 of 70 WGS-inconclusive index patients, 4.3%). Further, unsupervised prote
omic outlier analysis supplemented with transcriptome sequencing revealed pathological gene underexpression 
induced by transcript disruptions in three more index patients with underlying (deep) intronic variants (3/70, 
4.3%), highlighting the potential for targeted antisense-oligonucleotide therapy development. Finally, trio-WGS 
prioritized a de novo missense change in the candidate PRMT1, encoding a histone methyltransferase. Data-sharing 
strategies supported the discovery of three distinct PRMT1 de novo variants in four phenotypically similar patients, 
associated with loss-of-function effects in in vitro assays.
This work underscores the importance of continually expanding sequencing cohorts to characterize the extensive 
spectrum of gene aberrations in dystonia. We show that a pool of unresolved cases is amenable to WGS and comple
mentary multi-omic studies, directing advanced aetiopathological concepts and future diagnostic-practice work
flows for dystonia.
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Introduction
The presentation of dystonia includes a broad diversity of clinical 
characteristics, ranging from isolated expressions affecting only 
part of the body to generalized manifestations with or without al
ternative clinical features.1,2 Dystonia can be diagnosed from the 
neonatal period to late adulthood, requiring involvement of mul
tiple specialists.3,4 Our incomplete knowledge about the aetiologic 
subtypes of dystonia limits the potential to stratify patients for clin
ical trials and therapy development.5,6

Panel and whole-exome sequencing (WES) analyses in single 
patients, small case series and a few larger populations have 
shown that around 500 genes can be associated with monogenic 
dystonia.7-14 Notwithstanding this, the steady gains in disease-gene 
discovery by systematic stepwise addition of newly sequenced indivi
duals within a defined cohort have not been well documented.15,16

Even among the most severe manifestations (e.g. early-onset general
ized dystonia with additional congenital anomalies), the maximum 
molecular diagnosis rate of WES is still capped at around 50%.17

Whole-genome sequencing (WGS) has the added benefit of detecting 
all possibly disease-relevant variations, but widespread application 
requires demonstration of its diagnostic efficacy in individual indica
tions.18-20 The role of WGS as a second-tier test in dystonia-affected 
patients with uninformative WES is unknown.21 Furthermore, many 
available WGS studies do not provide the capacity for high- 
throughput functional annotation of variants and downstream muta
tional effect-guided gene prioritization.18,19,22 Quantitative proteo
mics paired with other multi-omic profiling methods has been 
associated with improved diagnostic performance in selected 
genome-sequenced individuals with rare metabolic disease pheno
types.23-25 By contrast, multilayered molecular testing strategies are 
understudied in dystonia.15,26 Compared with some multi-omic mo
dalities such as transcriptomics, the integration of proteomics in 
variant-analysis workflows has lagged behind.20,27-29

Over a decade, we have established a network involving multi- 
skilled experts, patient organizations and specialist referral sites to 
provide a systematic approach to the diagnosis of genetic dystonia.30

In this work, we demonstrate scalability of WES analyses for continu
ously recruited, geographically diverse groups of dystonia-affected 
individuals with linear increase in gene identification. We report 
transition from WES to WGS in a population of long-term undiag
nosed cases with more severe forms of the disease to expand 
diagnostic capabilities and assess disregarded variants including mu
tations cryptic to prior testing. We genotyped short tandem repeats 
(STRs),31 noting an unexpected role of repeat-expansion disorders 
in dystonia. Finally, we increased the aetiologic yield of WGS by co
hortwide proteomics and an array of case-specific analysis strategies 
including RNA sequencing (RNA-seq), functional assays and data- 
sharing, the latter two of which contributed to delineation of a previ
ously undescribed monogenic disease with dystonia due to PRMT1 
variants.

Our study underscores the imperative for genome-wide ana
lysis of all variant types and implementation of multifaceted ad
junct functional tests to augment diagnostic rates in rare dystonias.

Materials and methods
Patients and study design

The index patients and additional family members were recruited 
through multi-site research collaboration from 38 institutions in 11 
countries between 2015 and 20247,8,30 (Fig. 1 and Supplementary 
Table 1). Informed consent for research studies was obtained for all 
participants in accordance with the ethical guidelines of our institu
tional review boards. Patients with secondary or known monogenic 
dystonia were ineligible. Standardized data on clinical manifesta
tions and long-term outcomes including videoed examinations 
were individually curated for use in variant prioritization and inter
pretation of genomic findings. The phenotyping entailed a compre
hensive documentation of signs and symptoms, examined by 
established neurologic assessment schemes and rating recommen
dations,1-4 as well as a thorough review of diagnosed comorbidities 
and available routine diagnostic test results. To enlarge the referral 
pool of patients from usually underrepresented geographical re
gions,32 a network of investigators in Ukraine and Slovakia (the latter 
focusing on underserved minority groups) has been involved since 
2022. A subset of the present cohort has been described in previous 
publications.7,8,17 WES was the primary genetic investigation of all 
patients in this study, followed by WGS in a subset of individuals 
whose conditions remained unexplained after completion of exome- 
wide analysis (Fig. 1A). We prioritized cases for WGS based on the 
following criteria: (i) ongoing suspicion of an underlying monogenic 
disorder (necessary inclusion criterion), as defined by one or more 
of the following points:17 dystonia onset <21 years, non-focal dys
tonia, coexisting features, ≥3 affected family members, referring clin
ician formulated a specific genetic differential diagnosis (e.g. on the 
basis of MRI abnormalities); (ii) relatives available for family-based 
WGS; and/or (iii) skin-biopsy sample obtainable for complementary 
multi-omic testing. There were two subgroups entering the WGS 
pathway: (i) patients who had received unrevealing WES by us under 
research protocols [253/305 WGS-cohort index patients (83.0%), indi
viduals from the here-described WES studies]; and (ii) patients with 
‘negative’ WES testing from external fee-for-service projects [52/305 
WGS-cohort index patients (17.0%)], making our population repre
sentative of a wider spectrum of challenging cases seen in different 
laboratories (Fig. 1A). According to the study workflow, we did not re
analyse existing WES data of patients following their ascertainment 
for WGS.25,33

Whole-exome sequencing

Study participants underwent WES on Illumina systems over a 
span of time. Research paired-end sequencing and data analyses 
were performed according to standards of our accredited labora
tory, as described previously.7,8 There were 1164 newly recruited in
dividuals [725 index patients, 2021–2024, 40.5% (1164/2874) of the 
total cohort] who had WES as part of the present study. Only likely 
pathogenic and pathogenic variants34,35 in line with the expected 
mode of inheritance and related to the phenotype were retained 
for downstream analysis (Supplementary Table 2). Additionally, 
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Figure 1 Study overview and overall cohort structures. (A) The WES cohort comprised 2874 individuals from 1825 families, analysed from 2015 to 2024. 
A total of 21.7% (396/1825) of the index patients received a molecular diagnosis, leaving 1429 unresolved families after exome-wide testing. Second-tier 
WGS was offered to a subset of undiagnosed cases and relatives, by applying inclusion criteria as follows: (1) ongoing suspicion of a monogenic con
dition, as defined by one or more of the following points17: dystonia onset <21 years, non-focal dystonia, coexisting features, ≥3 affected family mem
bers, referring clinician formulated a specific genetic differential diagnosis (e.g. on the basis of MRI abnormalities); (2) family-based sequencing design 
possible; and (3) available consent for skin-biopsy sampling to complete multi-omic studies. Criteria (2) and (3) were not fulfilled by all included pa
tients. An additional 52 index patients with uninformative WES were ascertained for the WGS experiments from external laboratories following re
search consent. The overall WGS sample size was determined by funding capacity, totalling 564 individuals from 305 families. We performed 
quantitative proteomic analyses in fibroblasts from 80 patients who underwent WGS. (B) Presence or absence of coexisting features, age at dystonia 
onset and dystonia distribution for 305 index patients in the WGS cohort. (C) Summary of WGS-cohort index patients with regard to gender, ancestry, 
family history information, neuroimaging and comorbidities. Brain MRI data were available for 204 index patients (66.9%). One or more additional 
movement disorders were present in 146 index patients (47.9%), and other neurologic and/or systematic features in 148 index patients (48.5%); the dis
tributions of non-dystonic movement symptoms and other features are shown in the bottom pie charts. (D) Summary of clinical characteristics for 80 
patients (76 index patients and 4 affected relatives) with available fibroblast-derived proteomic datasets. Brain MRI data were available for 52 patients 
(65.0%). DD = developmental delay; ID = intellectual disability; MD = movement disorder; WES = whole-exome sequencing; WGS = whole-genome 
sequencing.
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we applied an established burden testing scheme to the WES data 
of our cohort in order to discover genes with significant excess of 
rare predicted loss-of-function (pLoF) variants in patients com
pared with controls.36,37

Whole-genome sequencing

We initiated WGS to clinical standards for a prospective tightly ascer
tained group of WES-unresolved patients with dystonia in 2020. 
Blood-derived DNA of affected individuals and their healthy relatives 
was subjected to library preparation using TruSeq PCR-free kits 
(Illumina),18,33 followed by paired-end 150-bp sequencing on 
NovaSeq6000 instruments at the next-generation sequencing Core 
Facility of University Hospital Bonn (Bonn, Germany), Helmholtz, 
Munich, or the Institute of Human Genetics of Technical University 
of Munich (Munich, Germany). The data generated per sample were 
>100 Gb, achieving an average depth of coverage of >40x  with >20x  
coverage for at least 95% of the nuclear genome. Mitochondrial 
DNA was entirely covered with >1000x  (Supplementary Table 3). 
The raw-data output was bioinformatically processed with an 
in-house-generated expert system that allowed for comprehensive 
variant analysis, EVAdb: https://github.com/mri-ihg/EVAdb. This 
platform integrated Burrows–Wheeler Aligner for genomic mapping 
(hg19) and the Genome Analysis Toolkit (GATK) for detection of single- 
nucleotide variants (SNVs), short insertions/deletions (indels) and 
mitochondrial (MT) variants. Discovery of structural variants (SVs) in
cluding copy-number variants (CNVs) was done using a combination 
of six algorithms: BreakDancer, CNVnator, LUMPY, Manta, Pindel and 
Whamg38; CNVs/SVs supported by ≥2 callers had higher analytic val
idity. Moreover, ExpansionHunter (EH) was deployed with default 
parameters in order to genotype STRs at 29 targeted loci of known 
relevance for neurologic disorders.31,39 All datasets underwent careful 
filtration and phenotype-driven variant prioritization processes. 
First, we focused on known disease genes and looked for variants in 
genes that had previously been associated with features observed 
in our patients.13 To that end, we obtained gene lists from the 
Online Mendelian Inheritance in Man (OMIM) database and PubMed 
searches, with internal curation as previously described.7,8 Priority 
was given to genes most strongly linked to the phenotypes, but 
expanded gene–disease relationships were also considered. 
Commonly used strategies were applied to narrow down variants 
according to rarity, mode of segregation, consequence, prediction of 
deleteriousness and documented clinical significance.20 Data from 
in-house-sequenced individuals, the Genome Aggregation Database 
(gnomAD) v.4.1.040,41 and other online repositories13,42-45 were used 
to determine variant allele frequencies for patients of European and 
non-European ancestries. At this stage, non-coding variants were 
only taken into consideration if they had been reported before in 
ClinVar45 or the Human Gene Mutation Database (HGMD).46 MT var
iants were extracted based on overlap with confirmed pathogenic mu
tations in MITOMAP.44 Prioritized CNVs/SVs had to satisfy the 
following requirements: (i) rare in 2000 in-house control genomes 
and reference databases40,42,43; (ii) interrupting a gene present on 
our disease–gene lists; and (iii) zygosity consistent with the known 
transmission of the disorder linked to the interrupted gene.13 We add
itionally searched for STRs31 that were expanded by comparing both 
allele sizes to locus-specific thresholds47 and evaluated results in 
the context of the patients’ clinical presentations. All datasets of 
patients with available skin biopsy-derived fibroblasts were further 
analysed in light of identified proteomic alterations (see below), facili
tating the assessment of variants with difficult interpretability includ
ing non-coding variants.48 Pathogenicity was determined according to 

appropriate American College of Medical Genetics and Genomics 
(ACMG) interpretation standards.34,35 Second, for all undiagnosed 
cases, we filtered for candidate variants in genes without established 
disease association; this strategy focused on damaging de novo 
heterozygous variants in mutation-intolerant genes and expected 
high-impact recessive alterations (i.e. bi-allelic gene-disrupting var
iants).20,49 Thereafter, a review of each case was performed to reach 
multidisciplinary consensus that proposed variants were deemed 
causative for the phenotype or plausible candidate aetiologies requir
ing further investigation. We visually inspected the read evidence for 
all SNVs, indels, MT variants and CNVs/SVs selected for reporting as 
diagnostic or candidate findings by using the Integrative Genomics 
Viewer (IGV).50

Orthogonal methods

WGS-identified STR expansions in FXN, HTT and PABPN1 were 
validated by standard PCR-based techniques in accredited test labora
tories. Additional evidence supportive of a causative association 
with identified variants was generated by the best applicable 
validated methods such as analysis of alpha-fetoprotein (AFP) 
concentration51 (ATM-mutated patients), plasma amino-acid profil
ing52 (GLS-mutated patient) and thyroid function testing53 (SLC16A2- 
mutated female patient).

Immunoblot analysis in patient fibroblasts

Fibroblast homogenates were produced according to described 
methodologies.30 Total protein lysates processed by sodium dode
cyl sulfate (SDS)-polyacrylamide gel electrophoresis were probed 
with the following primary antibodies: ANK2 (Santa Cruz, sc-12718, 
1:1000), GLS (GeneTex, GTX131263, 1:5000), GAPDH (Sigma, 
G8795-25UL, 1:20 000) and β-tubulin (abeomics, 11-13002, 1:5000). 
Blots were incubated with species-appropriate secondary anti
bodies (anti-rabbit, Biolegend, 406401, 1:1000; anti-mouse, 
Jackson, 115-036-062, 1:10 000).

Glutaminase activity assay

We assayed the activity of the GLS-encoded enzyme glutaminase in 
patient and control fibroblasts by using the Glutaminase (GLS) 
Activity Assay Kit (Elabscience, E-BC-K660-M) per the manufac
turer’s specifications.

RNA sequencing

Transcriptome libraries were created from fibroblast-derived 
mRNA using the same strand-specific, polyA-tailed protocol 
(Illumina TruSeq) as in our previous RNA-seq studies.54,55 All the 
mRNA samples used in the experiments had a high quality score 
(RNA integrity number of 10 for each sample). Each RNA-seq assay 
achieved a median sequencing depth of at least 50 million reads,55

with a high percentage of accurately aligned reads (>80% for all 
samples).55 RNA-seq data were assessed on a per patient basis, al
lowing us to examine unique transcriptional perturbations related 
to genomic variants.54 WGS-prioritized mutational events with po
tential impact on splicing were manually evaluated using IGV.54 For 
investigation of outliers of gene expression, we ran the Outlier in 
RNA-Seq Finder (OUTRIDER) tool using the recommended default 
settings.55,56 Fibroblast RNA-seq data of 269 individuals with non- 
dystonic Mendelian conditions were used as controls.55,57
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Quantitative proteomic analysis

We augmented our WGS experiments with the study of overall pro
tein signatures of patient fibroblasts to explore the added value of 
proteomics for diagnosis in dystonia. The proteomics-guided 
framework was based on the evaluation of protein expression 
changes that were unique to the specific patient, as outlined in 
our earlier work.23 We used proteomic profiling as a complemen
tary diagnostic tool to WGS in two distinct ways: (i) we initiated 
the analytic protocol from observed genomic variants of indeter
minate diagnostic confidence with the goal of validating them as 
relevant contributors to the phenotype; and (ii) we utilized the 
datasets of cases without candidates to search globally for outliers 
of expression and nominate genes for closer analysis. Detailed as
say protocols of liquid chromatography-mass spectrometry 
(LC-MS) on fibroblast extracts and the raw-file processing strategies 
have been reported elsewhere.23,54,57,58 LC-MS data were acquired 
at the BayBioMS core facility of the Technical University of 
Munich (Freising, Germany) on a Fusion Lumos Tribrid mass spec
trometer (Thermo Scientific). Outputs were analysed using the 
MaxQuant platform,59 identifying peptides and reviewed canonical 
and isoform proteins.23 Analyses were performed in separate 
batches over the course of the study. For quantitative ranking and 
outlier detection, we used in-house developed pipelines and 
software including PROTRIDER (https://github.com/gagneurlab/ 
py_outrider),23,57 which provided a list of expression outliers for 
each sample along with information on multiple testing-corrected 
P-values, z-scores and fold-change (FC) for deviations compared 
with the proteomics test cohort. PROTRIDER, a denoising 
autoencoder-based algorithm,56 was designed to automatically cor
rect for known and unknown confounders including batch effects 
and other technical variables.23 Our large total cohort (n = 440 pro
teomes; 80 from patients with dystonia, 360 from independent in- 
house research participants with rare disorders)57 served as an ef
fective control dataset for investigation of underexpression and 
outlier status in each individual case subject. Proteins that were 
not detected in ≥50% of samples were removed from the analysis. 
We specifically valued all underexpressed proteins with adjusted 
P < 0.05,23 but also extended filtering parameters to scrutinize other 
lower-expressed products of dystonia-associated genes7,8,13 in pa
tients of interest.

Functional characterization of candidate PRMT1 
variants

To test the functional impact of PRMT1 missense changes, we 
designed gBlock DNA sequences (Integrated DNA Technologies) 
of normal control and mutant protein arginine methyltransferase 
1 (PRMT1). Four mutants were created to carry single-residue sub
stitutions seen in patients from this study (n = 4) or the literature 
(n = 1),60 and one to carry a gnomAD-listed ‘control’ variant.40

DNA fragments were inserted into the pETM-11 bacterial expres
sion vector61 containing an N-terminal 6xHis-Tag by restriction en
zyme cloning. Successful integration was confirmed by Sanger 
sequencing. Vectors were transformed into the Escherichia coli 
strain Rosetta2 (DE3) pLysS for overexpression. Expression levels 
of normal control and mutant versions of PRMT1 in bacterial lysates 
were analysed by immunoblotting using anti-Prmt1 (Abcam, 
ab73246); anti-RecA (Abcam, ab63797) served as the internal con
trol. PRMT1 proteins were purified as previously described,62 and 
methyltransferase activity was measured using the MTase-Glo™ 
Methyltransferase Assay (Promega).

Results
Multinational dystonia cohort for genomic analyses

A total of 2874 individuals (1933 patients and 941 healthy family 
members) were enrolled by us for WES (Fig. 1A and 
Supplementary Table 1). Among index patients, females were 
slightly overrepresented (955/1825, 52.3%). The participants were 
from 1825 families of diverse geographical origin. We actively in
cluded families from countries that appeared underrepresented 
in previous dystonia sequencing projects,7,11,15 focusing on these 
populations especially during the new recruitment period from 
2021 to 2024 (Fig. 2A). We performed WES in more than one affected 
member in 538 families (55 duos, 450 trios, 28 quartets, 5 multiplex 
pedigrees).

Review of our WES cohort identified 253 families who met eligi
bility criteria for WGS and were interested in this follow-up. 
Additionally, 52 families who did not have an identified molecular 
basis after external WES were enrolled for WGS (Fig. 1A). In total, 
177 WGS-eligible patients (177/305, 58.0%) were recruited as single
tons (index-only), while for 128 cases (128/305, 42.0%) at least one 
additional family member was ascertained for WGS (5 duos, 111 
trios, 8 quartets, 4 multiplex pedigrees). Demographic and clinical 
features of the WGS-analysed index patients are summarized in 
Fig. 1B and C; the majority of cases had early disease onset (<21 
years, 81.3%; 61.3% with onset in infancy or childhood) and dis
played generalized or segmental dystonia (50.8% and 35.7%, re
spectively) (Fig. 1B). Coexisting symptoms were present in 68.9% 
of patients, comprising a wide spectrum of abnormalities including 
additional movement disorders, developmental delay, intellectual 
disability and other features (Fig. 1C).

Of the patients who proceeded to WGS, 80 (76 index patients; 76/ 
305, 24.9%) consented for skin-biopsy sampling. Figure 1D shows an 
overview of the characteristics of patients with fibroblasts available 
for multi-omic analyses. Proteomics was completed for all biopsied 
patients (Fig. 1A), whereas RNA-seq was done in a subset (n = 9) for 
whom this method was expected to help further with evaluation of 
specific variants.

Longitudinal evaluation of reportable whole-exome 
sequencing findings

Of the 1825 index patients tested by WES, 396 (21.7%) were molecu
larly diagnosed over the course of the study (Fig. 2A and B and 
Supplementary Table 2). Most diagnoses came from likely patho
genic/pathogenic34 coding and splice-site SNVs (298/404; 73.8%) or 
indels (103/404; 25.5%), whereas screening for likely pathogenic/ 
pathogenic35 exonic deletion CNVs and larger microdeletions 
yielded another 6.4% (26/404) of diagnoses. We were significantly 
more successful in establishing diagnoses in patients who had at 
least one relative that was also sequenced [diagnostic yield in 
family-based designs 37.4% (201/538) versus 15.2% (195/1287) in sin
gletons; P < 0.001, Fisher’s exact test].

We identified similar overall diagnostic rates at the time of each 
intake cut-off of our programme [19.1% (135/708) for 2019,7 20.0% 
(220/1100) for 2021,8 21.7% (396/1825) for 2024; Fig. 2A and B], with 
increased yields for 2019 and 2021 when implementing reanalysis 
strategies [1.0% (7/708) and 2.5% (28/1100) increase, respectively; 
Supplementary Table 2]. In the total cohort, we carried out reanaly
ses in an ad hoc manner, usually in the context of gene discovery,30

variant classification updates45 or filtering modifications for indi
vidual genotypes.67 Dual diagnoses were achieved for nine patients 
(9/1825, 0.5%; Supplementary Table 2), indicating the presence of 
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blended phenotypes related to the clinical spectra of different 
genes in large dystonia cohorts. Notably, there was higher diagnos
tic success in patients from populations with under recruitment, al
though the numbers were relatively small (49/154, 31.8%; Fig. 2A
and Supplementary Table 2). Only 64 genes (64/205; 31.2%) had 

disease-related variants in two or more families (Supplementary 
Table 2), accounting for 65.7% of diagnosed index patients 
(260/396). All remaining diagnoses were unique, illustrating the im
mense diversity of underlying Mendelian causes in dystonia. When 
analysed by time intervals of the study (Fig. 2B), the number of 

Figure 2 Linearly growing number of dystonia-associated genes in the WES cohort. (A) Recruitment sites in the study with inclusion of normally un
derrepresented patient groups and the associated overall diagnostic rates achieved by WES. Geographical areas with underserved dystonia popula
tions and new recruitment foci are highlighted in green. (B) Cumulative dystonia patient ascertainment for WES over time, with the number of 
index patients analysed at the time cut-offs of the study in 20197–20218–2024 represented by the size of each point; a detailed description of the recruit
ment process is provided elsewhere.7 The number of identified disease genes increased with increasing cohort size with no signs of plateauing. The 
diagnostic yield was relatively stable at ∼19%–22%. Disease genes identified by WES in the entire cohort over a decade are as follows [alphabetical order; 
141/205 (68.8%) found in a single family only; for details, see Supplementary Table 2]: AARS1, ACTB, ADAR, ADCY5, AFG3L2, ALS2, ANK2, ANO3, AOPEP, 
ARHGEF9, ARSA, ASXL3, ATL1, ATM, ATP1A3, ATP2B2, ATP5F1A, ATP5F1B, ATP5MC3, ATP7B, ATP8A2, AUTS2, BCL11B, BRAF, BRPF1, C19orf12, CACNA1A, 
CACNA1E, CAMK4, CAMTA1, CASK, CD40LG, CHD3, CHD4, CHD8, CNTNAP1, COQ8A, CP, CSDE1, CTNNB1, CUL3, CUX1, CWF19L1, DCAF17, DDC, DHCR24, 
DHDDS, DLG4, DLL1, DNAJC6, DNM1L, DNMT1, EBF3, ECHS1, EEF1A2, EFTUD2, EIF2AK2, EIF4A2, ERCC4, ERCC8, FA2H, FBXO31, FGF14, FITM2, FOXG1, 
FOXP2, FRMD5, FRYL, FTL, GABBR2, GABRA1, GAD1, GCH1, GJA1, GJC2, GNAL, GNAO1, GNB1, GRIA2, GRIA3, GRID2, GRIN1, GRIN2A, HECW2, HEXA, 
HIBCH, IFIH1, IMPDH2, INTS11, IRF2BPL, KCNA2, KCNB1, KCNJ10, KCNMA1, KCTD17, KIF1A, KIF5A, KMT2B, LIG4, LRRK2, MAG, MATR3, MECP2, MECR, 
MED23, MICU1, MMAA, MORC2, MRE11, MSL3, NAA15, NARS2, NAV3, NEFL, NFIX, NGLY1, NKX2-1, NPC1, NR4A2, NUP54, OPA1, PAK1, PANK2, PARK7, 
PCDH12, PDE10A, PDHA1, PINK1, PLA2G6, PNKD, PNPLA6, POGZ, POLG, POLR1A, POLR3A, PPP2R5D, PPT1, PRKCG, PRKN, PRRT2, PSEN1, PTS, PURA, RALA, 
RARB, RERE, RHOBTB2, SATB1, SCN2A, SCO2, SCP2, SERAC1, SETX, SGCE, SHANK3, SHQ1, SLC16A2, SLC19A3, SLC20A2, SLC2A1, SLC6A1, SLC6A3, 
SLC9A6, SNAP25, SNX14, SON, SOX2, SOX6, SPAST, SPG11, SPG7, SPR, SPTBN1, SRRM2, SUCLG1, SUOX, SYNE1, TBC1D24, TBCD, TBX1, TCF20, TECPR2, 
TFE3, TH, THAP1, TMEM240, TOR1A, TTPA, TUBB4A, UBE3A, UBTF, VLDLR, VPS16, WAC, WARS2, WASHC5, WDR45, WDR73, WFS1, YY1, ZC4H2, ZEB2, 
ZMYND11, ZNF142, ZNF335. (C) Pedigrees for three families (black fill, individual with dystonia; grey fill, individual with neurodevelopmental phenotype 
without dystonia; index patients indicated with arrows) with ANK2 heterozygous predicted loss-of-function (pLoF) variants, and the positions of the 
variants mapped to the ANK2 protein sequence; ANK2 pLoF mutations previously reported in autism63 and other NDDs64 are shown in the protein sche
matic for comparison (bottom). Patient ANK2-GM-A was identified via GeneMatcher.65 The dystonia-related ANK2 variants p.Glu346* and 
p.Thr1269Hisfs*19 were absent from gnomAD v4.1.0; p.Arg1427* was present in a single gnomAD-v.4.1.0 subject, as seen for an increasing number 
of NDD-causing variants associated with variable expressivity41; p.Arg1427* has also been identified in independent clinically affected individuals 
(listed as ‘likely pathogenic’ in ClinVar, ID: 3338732). Immunoblotting performed on fibroblasts from one WES-cohort individual (M-WES-S143) and 
three controls (C1–C3) showed significantly reduced ANK2 expression in the patient, compatible with the described haploinsufficiency mechanism 
of the disorder.64 Blots are representative of three biological replicates (see also Supplementary Fig. 1); in bar plots for quantification, results are shown 
as mean ± standard deviation represented by error bars (statistical significance determined by Student’s t-test). +/− = monoallelic variant carrier; +/+ = 
homozygous reference allele; ANK2, NM_001148.6. (D) Burden testing to demonstrate significant enrichment of heterozygous CHD3 pLoF variants in 
adult-onset isolated dystonia. Differences in carrier rates of rare (MAF < 0.0005) pLoF variants (defined as nonsense, frameshift and splice-site altera
tions) between all individuals with late adulthood-onset1 isolated dystonia in the WES cohort (n = 303) and controls from gnomAD-v.2.1.1 [non-Finish 
European (NFE) subset, n = 64 603]40 were determined according to established methods (Test Rare vAriants with Public Data/TRAPD approach).36,37 A 
flow chart of the analysis strategy is shown. Quantile-quantile plots for the study of NDD-associated genes (n = 1615; SysNDD database66) and all CCDS 
genes (n = 20 000)36 highlight a single significant signal for CHD3 (P < 3.1 × 10−5 and P < 2.5 × 10−6, respectively, indicated with dashed horizontal lines; 
Fisher’s exact test; genomic inflation factor λ is provided). CCDS = consensus coding sequence; gnomAD = Genome Aggregation Database; MAF = minor 
allele frequency; NDD = neurodevelopmental disorder; WES = whole-exome sequencing; WGS = whole-genome sequencing.
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causally involved genes seemed to grow linearly, from 77 disease 
genes in the cohort in 2019 (708 families)7 to 205 disease genes in 
2024 (1825 families). Of these currently reported genes, 150 
(73.2%) had established or proposed roles in brain development 
(‘definitive’ neurodevelopmental disorder-associated genes ac
cording to the SysNDD database66; Supplementary Table 2), con
sistent with our previous observations.7 Each doubling of sample 
size for patients with dystonia and coexisting neurologic and/or 
systemic features corresponded to an ∼90% increase in contribut
ing neurodevelopmental loci.

While the rate of neurodevelopmental findings in patients ≥18 
years of age was significantly lower than in the paediatric subgroup 
[10.0% (125/1245) versus 26.4% (153/580) diagnosed index patients; 
P < 0.001, FET], we encountered a number of unexpected diagnoses re
lated to neurodevelopmental genes with no previous link to dystonia 
in cases from adult neurology practice. In two unrelated patients in 
young adulthood with dystonia, myoclonus and neuropsychiatric co
morbidity, we detected truncating variants in ANK2 (Fig. 2C and 
Supplementary Table 2), a gene in which pLoF mutations have origin
ally been found in individuals with autism63 and more recently in vari
able neurodevelopmental syndromes with epilepsy.64 Reduced ANK2 
expression, demonstrated in immunoblotting analysis, confirmed the 
LoF effect of the variant found in the patient with available fibroblasts 
(Fig. 2C and Supplementary Fig. 1). GeneMatcher-supported65 identifi
cation of a patient with dystonia and epilepsy harbouring another 
ANK2 pLoF alteration provided further evidence for an expanded 
gene–phenotype association (Fig. 2C). Moreover, we observed four 
mutually unrelated patients aged 48–64 years with isolated dystonia 
beginning in late adulthood1 who had pLoF variants in CHD3 
(Supplementary Table 2), suggesting that disruption of this neurode
velopmental disorder gene68 may have caused these subjects’ pheno
types. To validate this, we performed gene-burden analyses of rare 
pLoF variants36,37 across known neurodevelopmental disorder genes 
(n = 1615; SysNDD database,66 accessed October 2023) and all coding 
genes36 (Fig. 2D). When comparing pLoF variant counts in patients 
with late-onset (>40 years1) isolated dystonia in our cohort (n = 303) 
with the reference dataset, only CHD3 but no other gene surpassed 
the multiple testing-corrected significance threshold in these tests 
(P < 3.1 × 10−5 for neurodevelopmental disorder-related genes, 
P < 2.5 × 10−6 for all genes; Fig. 2D).

Increase in diagnostic yield by whole-genome 
sequencing analysis

Second-line WGS enabled genetic diagnosis in 37 index patients 
(37/305, 12.1%; Table 1 and Supplementary Table 4). We identified 
42 variations across 33 genes and 1 microduplication that we re
garded with high confidence as causative (Table 1 and 
Supplementary Table 4). Of the 38 diagnoses (one patient had a 
dual diagnosis), 81.6% (31/38) were established on the basis of likely 
pathogenic/pathogenic34,35 SNVs (n = 12), indels (n = 4), MT variants 
(n = 4) and CNVs/SVs (n = 15); six (6/38, 15.8%) were made on the ba
sis of STR-alleles classified as disease causing (n = 10) and one on 
the basis of a pathogenic SNV plus an STR (Table 1, 
Supplementary Table 4 and Figs 3 and 4). Eighteen index patients 
(18/37, 48.6%) were found to have autosomal dominant disorders, 
13 (13/37, 35.1%) autosomal recessive disorders, 2 (2/37, 5.4%) 
X-linked disorders and 4 (4/37, 10.8%) mitochondrial DNA-related 
disorders. We defined 7 of the 17 SNVs and indels (41.2%) as novel, 
because they had not been previously described in ClinVar45 or the 
literature. The set of affected genes consisted of 28 known 
dystonia-associated genes (28/33, 84.8%) and 5 genes (5/33, 15.2%) 

that have been linked to neurologic diseases but not previously to 
dystonia.13 Three index patients were considered to have ultra-rare 
conditions with fewer than 20 families reported to date 
(Supplementary Table 4). Review of the WGS findings identified 
that the solved patients had defied earlier diagnosis for a variety 
of reasons, including insufficient variant or disease gene evidence 
at the time of WES analysis,13,14,45,46 lack of screening for variants 
outside the proximity of exons in clinical diagnostics,71,72 technical 
inferiority of WES73,74 and bioinformatic limitations of previously 
used pipelines75,76 (Supplementary Table 4).

Eight diagnoses in seven index patients (7/37, 18.9%; Table 1
and Supplementary Table 4) were achieved by improved curation 
of coding variants, considering updated versions of ClinVar45

and the latest gene–phenotype associations.13,14 One example 
was DNM1L-related encephalopathy identified in two index pa
tients with dystonia, developmental delay and epilepsy; the likely 
pathogenic heterozygous c.176C>T (p.Thr59Ile) missense variant, 
initially disregarded in WES analyses, was prioritized after a func
tionally validated alternative missense change at the same codon 
had been deposited in ClinVar (February 2022).45 Known pathogen
ic intronic variants were observed in two index patients (2/37, 
5.4%) who previously tested ‘negative’ by external WES; these 
were homozygous and compound heterozygous variants at +6 
and +22 positions of donor sites in POLR3A (Table 1 and 
Supplementary Table 4). We uncovered reportable, previously un
identified variations in regions poorly captured by WES, including 
exonic sequences of KMT2B and SHANK1, resulting in different 
forms of neurodevelopmental dystonia, and we established a non- 
coding RNA gene-linked diagnosis by identification of compound 
heterozygous variants of SNORD118 in a child with dystonia and 
leucoencephalopathy (Table 1, Supplementary Table 4 and 
Supplementary Figs 2 and 3). A mitochondrial genome analysis, 
previously unaccomplished on our WES platform, led to diagnoses 
in four additional index patients (4/37, 10.8%), associated with dif
ferent levels of heteroplasmy (12%–97%) of pathogenic variants in 
MT-ATP6, MT-ND3, MT-ND6 and MT-TL1 (Table 1, Supplementary 
Table 4 and Supplementary Fig. 4).

We discovered disease-associated CNVs in 13 families (13/37, 
35.1%), which were characterized with precise single-nucleotide 
breakpoint information (Table 1, Supplementary Table 4, Fig. 3
and Supplementary Figs 5 and 6). Eleven index patients (11/13, 
84.6%) presented deletions (six heterozygous, one hemizygous, 
two homozygous, three compound heterozygous), ranging in size 
from 218 bp to 488.2 kb, and two carried heterozygous duplications 
(10.2 kb and 1.3 Mb) (Fig. 3A–E and Supplementary Figs 5 and 6). We 
reviewed the properties of these newly recognized CNVs: four were 
single-exon or partial-exon deletions (<5 kb; 4/14, 28.6%), explain
ing why these events were missed by previous screening;76-78

similarly, overlapping compound heterozygous PRKN deletions, a 
deletion of the last two exons of ATM, as well as a SGCE 3-exon 
tandem duplication escaped WES-based detection in our bioinfor
matic pipeline; other CNVs were initially filtered out because of 
limited understanding of genotype-phenotype correlations, such 
as an BCL11B intra-exonic 218-bp deletion detected in two sisters 
with generalized dystonia (Fig. 3E); BCL11B has been associated 
with syndromic immunodeficiency, while only recent publications 
implied a link to dystonia-predominant phenotypes.69,70 In three 
cases from the externally recruited subcohort (Fig. 1A), CNVs 
were not systematically captured from the WES data prior to WGS 
(Table 1 and Supplementary Table 4). Analysis of other SVs identi
fied a de novo genomic rearrangement with breakpoints in coding 
and non-coding parts of the neurodevelopmental disease and 
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dystonia-associated gene ASXL3,79,80 which consisted of an in
verted duplicated fragment and a deletion resulting in the disrup
tion of two exons (Supplementary Fig. 7).

EH-based STR calling31 revealed diagnoses for seven more 
families (7/37, 18.9%; Table 1, Supplementary Table 4, Fig. 4 and 
Supplementary Fig. 8). A polyglutamine expansion in HTT was found 
in a patient with dystonia and signal alterations of the basal ganglia 
who was clinically suspected of having a brain iron-accumulation 
disorder but not Huntington disease (Fig. 4A). In a family with mul
tiple members affected by dystonia and muscular atrophy, the index 
patient and two affected siblings were identified with an expanded 
PABPN1 polyalanine tract (Fig. 4B), underlying oculopharyngeal mus
cular dystrophy-1, a condition that may manifest with movement 
disorders, albeit rarely.81 Bi-allelic dodecamer expansions in the 5′- 
untranslated region (UTR) of CSTB were called in two sisters with a 
similar phenotype involving myoclonic ataxia and dystonia 

(Fig. 4C); further assessment based on proteomics and transcrip
tomics showed significantly decreased expression of CSTB in both sis
ters’ fibroblasts, confirming the diagnosis of Unverricht–Lundborg 
disease (ULD). Additionally, an unrelated index patient presented 
with dystonia-ataxia, myoclonus, and epilepsy and was identified 
to carry the expanded ULD-causing CSTB alleles (Table 1 and 
Supplementary Table 4). Another 5‘-UTR repeat expansion was iden
tified in GLS, in trans with a c.1197+2T>C splice-site SNV, in three sib
lings with a neurodevelopmental dystonia-ataxia syndrome and 
elevated plasma glutamine (1510 µmol/l in the index patient, refer
ence range: 329–976 µmol/l); RNA-seq uncovered the presence of an 
abnormally extended exon-10 as a result of c.1197+2T>C, and the 
diagnosis of glutaminase deficiency was validated by biochemical 
studies: we demonstrated loss of GLS expression in immunoblotting 
on the index patient’s fibroblasts (Fig. 4D and Supplementary Fig. 9), 
associated with markedly diminished GLS activity in patient cells 

Table 1 Summary of genes with causative variants in 44 index patients according to WGS data analysis strategy

Number of solved index patients (total index patients 
analysed)

Identified disease genes (index patient study ID, zygosity of detected variant, variant 
category, variant size)

New variant or gene evidence (coding SNVs/indels)
7 (305) ANO3 (G114, het, SNV, 1 bp), ATP6V1A (G162, het, SNV, 1 bp), DNM1L (G096, het, SNV, 

1 bp), DNM1L (G227, het, SNV, 1 bp), KMT5B & SRRM2 (dual diagnosis in G281, het, 
indel, 4 bp & het, SNV, 1 bp), VPS16 (G125 het, indel, 1 bp), XPA (G191, hom, indel, 
14 bp)

Known pathogenic intronic mutations
2 (305) POLR3A (G110, hom, SNV, 1 bp), POLR3A (G172, het/het, SNV/SNV, 1 bp/1 bp)

Coding variants not (sufficiently) covered by WES
3 (305) KMT2B (G043, het, indel, 7 bp), SHANK1 (G113, het, SNV, 1 bp), SNORD118 (G132, het/het, 

SNV/SNV, 1 bp/1 bp)
Mitochondrial DNA mutations

4 (305) MT-ATP6 (G055, 96% mutational load, MT variant, 1 bp), MT-ND3 (G085, 97% mutational 
load, MT variant, 1 bp), MT-ND6 (G139, 25% mutational load, MT variant, 1 bp), MT-TL1 
(G254, 12% mutational load, MT variant, 1 bp)

CNVs/SVs
14 (305) ASXL3 (G274, het, complex rearrangement, 352 bp duplication and 3.2 kb inversion and 

2.6 kb deletion), ATM (G205, het/het, deletion CNV/SNV, 17.1 kb/1 bp), BCL11B (G226, 
het, deletion CNV, 218 bp), CACNA1A (G173, het, deletion CNV, 3.3 kb), DLL1 (G120, 
het, deletion CNV, 488.2 kb), PRKN (G204, het/het, deletion CNV/deletion CNV, 
286.1 kb/306.8 kb), SGCE (G222, het, duplication CNV, 10.2 kb), SLC16A2 (G059, hem, 
deletion CNV, 3.1 kb), SPG7 (G275, hom, deletion CNV, 714 bp), THAP1 (G225, het, 
deletion CNV, 154.4 kb), TIMM8A (G201, het, deletion CNV, 25.4 kb), TNRC6B (G234, 
het, deletion CNV, 73.2 kb), TTC19 (G174, hom, deletion CNV, 248 bp), 22q11.2 (G266, 
het, duplication CNV, ∼1.3 Mb)

STR diagnoses
7 (305) CSTB (G236, hom, STR, CI: 27–51 CCCCGCCCCGCG units for allele 1 and 22–42 

CCCCGCCCCGCG units for allele 2), CSTB (G293, hom, STR, CI: 29–70 CCCCGCCCCGCG 
units for allele 1 and 23–56 CCCCGCCCCGCG units for allele 2), FXN (G079, hom, STR, 
CI: 108–216 GAA units for allele 1 and 87–181 GAA units for allele 2), FXN (G299, hom, 
STR, CI: 107–228 GAA units for allele 1 and 86–189 GAA units for allele 2), GLS (G258, 
het/het, STR/SNV, CI: 115–195 GCA units/1 bp), HTT (G014, het, STR, 40 CAG units), 
PABPN1 (G075, het, STR, 4 GCG and 3 GCA units)

Diagnoses enabled by integrative multi-omic analysisa

6 (70 WGS-inconclusive index patients with available 
fibroblasts), plus 1 reanalysed case

ATM (G277, hom, MNV, 2 bp), IRF2BPL (G052, het, indel, 23 bp), MECP2 (G161, het, indel, 
47 bp), SLC16A2 (G168, het, SNV, 1 bp), SPG11 (G196, het/het, SNV/SNV, 1 bp/1 bp), 
UFC1 (G245, het/het, indel/SNV, 12 bp/1 bp), UFC1 (G269, het/het, indel/SNV, 1 bp/ 
1 bp)

Additional details of the identified genes and variants, the sequencing designs, the associated phenotypes, the findings from fibroblast-based proteomics (and RNA sequencing) 
and reporting of barriers that were overcome by WGS or WGS plus proteomics are provided in Supplementary Table 4. bp = base pair(s); CI = confidence interval 

(ExpansionHunter); CNV = copy-number variant; hem = hemizygous; het = heterozygous; hom = homozygous; indel = short insertion/deletion (<50 bp); MNV = multinucleotide 

variation; MT variant = mitochondrial variant; SNV = single-nucleotide variant; STR = short tandem repeat; SV = structural variant; WES = whole-exome sequencing; WGS = 
whole-genome sequencing.
aProteomics was performed to facilitate interpretation of variants of uncertain significance or variants in technically challenging regions and to guide variant prioritization in 

unresolved cases. Additional RNA sequencing was performed for patients with variants that were suspected to have a potential effect on splicing and/or transcript integrity.
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Figure 3 Genomic alignment of WGS data supporting CNVs reported in this study. Integrative Genomics Viewer50 (IGV) screenshots are shown along 
with zoom-in panels depicting genomic breakpoints of CNVs. Uniform coverage allowed for resolution at the nucleotide level; genomic coordinates 
(hg19) of the breakpoint positions are provided. (A) A heterozygous single-exon deletion in CACNA1A (NM_000068.4: exon 30) in index patient G173 
with dystonia and ataxia. (B) A homozygous deletion interrupting parts of TTC19 exon-7 (NM_017775.4) in index patient G174 with dystonia, ataxia 
and intellectual disability. (C) Two overlapping heterozygous deletions in PRKN (NM_004562.3) in index patient G204 with dystonia-Parkinsonism. A 
2-exon deletion (exons 2–3) was maternally inherited and a 3-exon deletion (exons 3–5) was paternally inherited. (D) A heterozygous intragenic tandem 
duplication in SGCE (NM_003919.3: exons 2–4) in index patient G222 with dystonia and myoclonus. (E) Family pedigree for index patient G226 (arrow) 
with dystonia and mild intellectual impairment; her sister (II-2) and deceased mother presented similar phenotypes. Representative clinical photo
graphs of the two affected siblings illustrate generalized dystonic postures. A heterozygous intra-exonic frameshift deletion CNV was detected in 
exon 4 of BCL11B (NM_138576.4), the gene’s hotspot for disease-causing truncating variants.69,70 CNV = copy-number variant; NA = biological sample 
unavailable; WGS = whole-genome sequencing; +/− = monoallelic variant carrier.
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(Fig. 4D). Finally, pathological intronic trinucleotide repeats in FXN 
were discovered in two index patients with adolescence-onset dys
tonia and ataxia (Table 1 and Supplementary Table 4).

High-throughput proteomics for variant 
functionalization and prioritization

In order to test proteomics as a potential adjunct to WGS diagnos
tics, we explored fibroblast proteomes of 80 patients (76 index pa
tients and 4 affected relatives) and correlated findings with 
genomic results (Fig. 1A, Table 1 and Supplementary Table 4). On 
average, we detected ∼8000 proteins per sample,23 corresponding 
to ∼51% of all OMIM-morbid genes.23 Of all dystonia-associated 
genes according to OMIM13 (accessed December 2023), 59% 

(352/598) were expressed in ≥75% of samples and 63% (375/598) in 
≥50% of samples.

First, proteomics was instrumental in resolving low-quality vari
ant calls and a variant of uncertain significance, yielding three new 
diagnoses (Table 1, Supplementary Table 4 and Fig. 5). In a child 
with dystonia and neuroregression, extended WGS filter strategies 
identified a de novo 23-bp frameshift duplication in IRF2BPL, removed 
from previous analyses as failing quality parameters (Fig. 5A); the 
variant was located in a region prone to alignment challenges and 
sequencing errors; the patient’s proteomic data showed IRF2BPL 
downregulation (FC: 0.43) consistent with the known haploinsuffi
ciency pathomechanism of IRF2BPL-associated neurodevelopmental 
disorder,82 strongly supporting the variant as a true-positive diag
nostic hit. In the case of a dystonic female patient with a differential 

Figure 4 Four examples of repeat-expansion disorders diagnosed by WGS. (A) Family pedigree for index patient G014 (arrow) with dystonia, choreatic 
movements and T2 signal abnormalities in basal ganglia on cerebral MRI (‘eye-of-the-tiger’ aspect), suggestive of neurodegeneration with brain-iron ac
cumulation disorder. ExpansionHunter31 (EH) detected an expanded CAG allele with 40 repeat units in HTT (NM_001388492.1). (B) Family pedigree for in
dex patient G075 (arrow) with dystonia, chorea, muscle weakness, dysphagia and cognitive decline; two siblings (II-1 and II-4) and the deceased mother 
had identical clinical disorders. Representative clinical photographs illustrate dystonic posturing while walking, as well as wasting of lower limbs and 
upper limbs in G075. EH-guided31 inspection of WGS reads in Integrative Genomics Viewer50 (IGV) revealed a 21-bp insertion, leading to an expansion 
of a polyalanine tract, in exon 1 of PABPN1 (NM_004643.4) in the three affected siblings, but not in a fourth, healthy brother (II-3). (C) Family pedigree 
for index patient G236 (arrow) and her sister (II-2), both affected by epilepsy and a combined movement disorder with dystonia, ataxia and myoclonus. 
Proteomic and transcriptomic analyses were performed on fibroblasts23,57 from G236 and II-2 to demonstrate a loss-of-function effect of EH-identified31

bi-allelic CCCCGCCCCGCG expansions in the 5‘-UTR of CSTB (NM_000100.4). Volcano plots of proteomics display significant underexpression of CSTB pro
tein in both siblings. Rank plot comparing CSTB levels across all proteome samples23,57 highlights the siblings as underexpression outliers; G236: CSTB, 
fold-change = 0.18, sample rank = 1; II-2: CSTB, fold-change = 0.26, sample rank = 2. Volcano plots of transcriptomics55,57 display significant underexpres
sion of CSTB mRNA in both siblings. In volcano plots, vertical lines represent log2fold-changes of −1 and 1, and horizontal lines indicate P = 2.5 × 10−6 

(Bonferroni corrected P-value for 20 000 hypotheses corresponding to the number of theoretically identifiable gene-derived proteins/RNAs). The red 
and blue points represent the patient measurements. (D) Family pedigree for index patient G258 (arrow) and two similarly affected siblings with devel
opmental delay and ataxic-dystonic movement disorders. In WGS data of all three siblings, EH screening31 uncovered a 5‘-UTR GCA expansion as a ‘se
cond hit’ in GLS (NM_014905.5), in addition to an exon-10 c.1197+2T>C splice donor variant. A multimodal experimental approach was deployed to 
validate the diagnosis of ‘global developmental delay, progressive ataxia and elevated glutamine’ (MIM: 618 412) due to glutaminase (GLS) deficiency; first, 
plasma amino acids were analysed in G258 to reveal increased levels of the diagnostic marker52 glutamine (1510 µmol/l, reference range: 329–976 µmol/l); 
second, fibroblast RNA-seq data were evaluated to identify a splicing abnormality resulting from c.1197+2T>C (black arrow): extension of exon-10 was 
observed in G258 but not in controls on Sashimi-plot visualization; third, immunoblotting was performed, showing drastic reduction of GLS expression 
in fibroblasts from G258 relative to three control lines (C1–C3; blots representative of three biological replicates, see also Supplementary Fig. 9; statistical 
significance in bar plots for quantification determined by Student’s t-test); finally, diminished GLS activity in G258 was confirmed by enzymatic testing in 
patient and control cells (C1–C3; activities shown in relation to activity in C1; each data-point indicates a biological replicate; statistical significance de
termined by Student’s t-test). NA = biological sample unavailable; RNA-seq = RNA-sequencing; UTR = untranslated region; WGS = whole-genome sequen
cing; +/− = monoallelic variant carrier; −/− = bi-allelic variant carrier; +/+ = homozygous reference allele.
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diagnosis of Rett syndrome, no suspicious variants were initially un
covered by WES/WGS; guided by the observation of relevant MECP2 
reduction (FC: 0.52) in the patient’s proteome, a poorly mapped 
(<20% of WGS reads) MECP2 de novo 47-bp frameshift indel, discarded 
by the analytical pipelines based on quality settings, was found after 
manual inspection in IGV (Fig. 5B). Another female patient, affected 
by dystonia and intellectual impairment, was identified to carry a de 
novo c.1025T>C (p.Leu342Pro) variant in the X-linked gene SLC16A2 
(Fig. 5C), classified as of uncertain significance because of the male 
preponderance in SLC16A2-related Allan–Herndon–Dudley syn
drome53,83-85 and the unknown consequence of a newly discovered 
missense substitution; proteomics indicated that the patient had 
the lowest abundance of SLC16A2 (FC: 0.28) among all study samples; 
in combination with characteristic thyroid hormone abnormalities53

[elevated free T3 levels (7.2 pmol/l, reference range: 3.8–6 pmol/l) and 
elevated free T3/T4 ratio (0.82, reference range: <0.75)], this was con
sidered convincing evidence to re-classify the variant as likely 
pathogenic and secured the diagnosis.

Second, untargeted outlier analysis of proteomic data pointed at 
four additional diagnostic findings that may not have otherwise 
been recognized (Table 1, Supplementary Table 4 and Fig. 6). 

We observed severely decreased amounts of SPG11 (FC: 0.01) in the 
proteome of a patient with dystonia and spasticity (Fig. 6A); reanalysis 
of WGS data revealed a SPG11 nonsense variant plus an intronic 
c.3454-28A>G alteration, not retained by initial filtering; integrated 
RNA-seq demonstrated a splicing defect with exon skipping and in
tron retention for c.3454-28A>G, validating the diagnosis of spastic 
paraplegia-11. Similarly, decreased UFC1-protein levels (FC: 0.21) led 
to reprioritization of two corresponding variants, a UFC14-amino 
acid deletion and an intronic c.255+17G>A variant, in the index pa
tient of a family with three siblings affected by dystonia, developmen
tal delay and spasticity (Fig. 6B); RNA-seq confirmed splice disruption 
with exon skipping, and segregation testing provided further evidence 
to support the diagnosis of UFC1-related neurodevelopmental dis
order. A search for additional carriers of the UFC1 intronic variant in 
our entire WGS-cohort datasets reidentified this mutation in com
pound heterozygosity with a frameshift variant in an unresolved pa
tient with a spastic-dystonic neurodevelopmental syndrome 
(fibroblasts unavailable), indirectly establishing another diagnosis 
(Table 1 and Supplementary Table 4). Lastly, a proteome-wide search 
for expression changes of dystonia-associated proteins identified low 
levels of ATM (FC: 0.31) in an isolated dystonia-affected patient with 

Figure 5 Diagnostic confidence of WGS results enhanced by proteomics. Integrative Genomics Viewer50 (IGV) pileups of WGS-identified variants and 
rank plots for protein levels across all fibroblast proteome samples23,57 are shown. The coloured points represent the patient measurements as indi
cated. (A) A de novo 23-bp duplication (red box) in a region with marked alignment complexity of IRF2BPL (NM_024496.4) in index patient G052. Note 
differences in read coverage of the target sequence between WES and WGS data. Diminished amounts of IRF2BPL protein in G052’s proteome supported 
the diagnosis of ‘neurodevelopmental disorder with regression, abnormal movements, loss of speech and seizures’ (MIM: 618088), associated with het
erozygous loss of IRF2BPL expression82; G052: IRF2BPL, fold-change = 0.43, sample rank = 1. (B) A poorly mapped de novo 47-bp indel (red box) in MECP2 
(NM_004992.4) in index patient G161. Note differences in read coverage of the target sequence between WES and WGS data. Underexpression of MECP2 
protein confirmed the diagnosis of Rett syndrome. A sample with known pathogenic heterozygous loss-of-function MECP2 variant58 was included in 
the sample rank plot as a positive control; G161: MECP2, fold-change = 0.52, sample rank = 1; positive control: MECP2, fold-change = 0.55, sample rank =  
2. (C) A de novo missense c.1025T>C (p.Leu342Pro) variant of uncertain significance in SLC16A2 (NM_006517.5) identified in index patient G168. Low ex
pression of SLC16A2 protein in G168’s proteome was indicative of a loss-of-function effect of c.1025T>C, although the variant caused no observable 
splicing abnormality (see RNA-seq Sashimi plot, variant position indicated with black arrow); G168: SLC16A2, fold-change = 0.28, sample rank = 1. 
The diagnosis was further validated by demonstration of characteristic alterations on thyroid function testing53 [elevated free T3 levels (7.2 pmol/l, 
reference range: 3.8–6 pmol/l) and elevated free T3/T4 ratio (0.82, reference range: <0.75)], adding G168 to the very short list of published female indi
viduals with Allan–Herndon–Dudley syndrome.83,84 RNA-seq = RNA sequencing; WES = whole-exome sequencing; WGS = whole-genome sequencing.
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no clear candidates from WES/WGS (Fig. 6C); using this information, 
we evaluated transcriptomic data and identified an ATM pseudoexon 
inclusion event, responsible for significant underexpression of ATM at 
the RNA level; re-review of the patient’s WGS-variant profile illumi
nated a homozygous deep-intronic multinucleotide variation (c.3284 
+695G>T; c.3284+699A>C) as the genomic alteration underlying 
ataxia-telangiectasia with elevated AFP levels in this patient.

Candidate gene discovery and PRMT1 variants 
identified as a novel cause of neurodevelopmental 
dystonia

As part of our WGS workflow, we undertook candidate gene 
searches coupled to systematic data sharing, primarily through 
a matchmaking platform65 and direct communication.20,30,86 We 

were able to assign compelling candidacy to four de novo heterozy
gous variants and three bi-allelic homozygous variants predicted to 
cause premature termination (Supplementary Table 5). Of the se
ven genes affected, one (SRRM4) is the subject of a manuscript in 
preparation, whereas another five await ‘matches’ (ETV1, MYO16, 
TMEFF1, TXLNG) or have functional studies underway (ADCY1).

In the candidate PRMT1, unassociated with a Mendelian disorder 
in OMIM,13 trio WGS revealed a de novo c.1033C>T (p.Arg345Trp) mis
sense variant in a patient with dystonia and neurodevelopmental 
dysfunction who previously had unrevealing WES in external labora
tories (Supplementary Table 5 and Fig. 7). Via multi-site collaboration, 
three additional individuals with overlapping neurodevelopmental 
presentations (one with manifesting dystonia) and PRMT1 de novo 
missense changes [c.745G>T (p.Ala249Ser), c.871G>A (p.Glu291Lys)] 
could be identified (Fig. 7A). For an outline of the clinical and 

Figure 6 Proteomics-guided variant prioritization in WGS data. Unbiased outlier analysis of proteomic data23 from index patient-derived fibroblast 
lines was performed and downregulated proteins were selected for closer examination in the context of WGS results. Volcano plots of fibroblast prote
omic and transcriptomic analyses as well as rank plots for protein levels across all proteome samples23,57 are shown. In volcano plots, vertical lines 
represent log2fold-changes of −1 and 1, and horizontal lines indicate P = 2.5 × 10−6 (Bonferroni corrected P-value for 20 000 hypotheses corresponding 
to the number of theoretically identifiable gene-derived proteins/RNAs). The coloured points represent the patient measurements as indicated. 
Schematic depictions not drawn to genomic scale. (A) Family pedigree for index patient G196 (arrow) with dystonia and spastic paraparesis. 
Proteomics highlighted SPG11 as expression outlier, associated with a combination of an intronic c.3454-28A>G variant and a nonsense mutation in 
SPG11 (NM_025137.4) in WGS data. Transcriptomics confirmed SPG11 underexpression at the RNA level. In Sashimi plots illustrating splicing in 
G196 (red) plus two representative controls, skipping of exon-20 and intron retention were observed as a consequence of SPG11 c.3454-28A>G. The 
schematic depicts the variant locations and identified splicing abnormality (top; bottom: normal splicing pattern), and the embedded IGV captures of 
RNA-seq and WGS data show the read pileups at the position of c.3454-28A>G. (B) Family pedigree for index patient G245 (arrow) and two similarly 
affected siblings with developmental delay, generalized dystonia and spasticity. Proteomics highlighted UFC1 as expression outlier, associated with 
a combination of an intronic c.255+17G>A variant and a 4-amino acid deletion in UFC1 (NM_016406.4) in WGS data. Transcriptomics confirmed 
UFC1 underexpression at the RNA level. In Sashimi plots illustrating splicing in G245 (green) plus two representative controls, skipping of exon-3 
was observed as a consequence of the UFC1 variation. The schematic depicts the variant locations and identified splicing abnormality (top; bottom: nor
mal splicing pattern), and the embedded Integrative Genomics Viewer50 (IGV) captures of RNA-seq and WGS data show the read pileups at the position 
of the variants. (C) Family pedigree for index patient G277 (arrow) with isolated dystonia and elevated AFP. Scrutiny of underexpressed products of 
dystonia-associated genes in proteomic data highlighted reduced levels of ATM, accompanied by a significant ATM expression deficit in transcrip
tomics. WGS data re-evaluation uncovered a non-coding homozygous c. 3284+695G>T; c.3284+699A>C variation in ATM intron 22 (NM_000051.3), as
sociated with the splicing-in of a 216-bp pseudoexon containing a premature stop codon; see Sashimi plots for G277 (blue) plus two representative 
controls (stop codon indicated with an asterisk). The schematic depicts the variant location and identified pseudoexon inclusion (top; bottom: normal 
splicing pattern), and the embedded IGV captures of RNA-seq and WGS data show the read pileups at the cryptic splice sites and the premature stop 
codon (TGA). AFP = alpha-fetoprotein; NA = biological sample unavailable; RNA-seq = RNA sequencing; WGS = whole-genome sequencing; +/− = mono
allelic variant carrier; −/− = bi-allelic variant carrier.
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molecular characteristics of each patient, see Supplementary Table 6. 
PRMT1, encoding an essential component of the epigenetic regulation 
machinery,92 exhibits high population-scale intolerance against both 
missense and LoF alterations [gnomAD-v4.1.0: missense-z-score =  
4.43, probability of being loss-of-function intolerant (pLI)-score =  
1.0].40 One of the identified variants [c.871G>A (p.Glu291Lys)] was 
recurrent in two patients. The three distinct variants all occurred at 
conserved residues in regions depleted in rare variation88 (Fig. 7B) 
and none of them was found in control databases (gnomAD-v4.1.0, 
in-house collections). Bioinformatic predictions and three- 
dimensional-structural simulations were in favour of their pathogen
icity (Fig. 7C and Supplementary Table 6). To evaluate directly 
whether the patient-specific PRMT1 variants could be damaging to 
protein function, we investigated the expression levels and en
zymatic activity of corresponding mutant constructs. One further 
PRMT1 de novo substitution published as part of a large neurodeve
lopmental disorder-cohort study (p.Gly333Ser)60 and a 
gnomAD-listed variant (p.Val260Ile)40 were also included in the 
experiments. As shown in Fig. 7D (see also Supplementary Fig. 
10), stable expression of PRMT1 was substantially decreased for 
two samples bearing the variants p.Ala249Ser and p.Glu291Lys 

found in our patients in comparison to the normal control protein. 
The published mutation p.Gly333Ser60 displayed similar behav
iour, causing major changes in PRMT1’s stability. Only one patient 
variant, p.Arg345Trp carried by the dystonia WGS-cohort case, 
had protein abundance similar to the normal control, but reached 
significantly reduced levels of enzyme function (Fig. 7E). The var
iants p.Ala249Ser and p.Gly333Ser had normal activity when the 
corresponding PRMT1 assay input was adjusted to normal control, 
suggesting that their residual expressed fractions were enzymati
cally intact (Fig. 7E), whereas p.Glu291Lys could not be tested in 
the enzymatic assay due to its severely compromised stability. 
In contrast, the variant from gnomAD did neither impair PRMT1 
expression nor enzymatic ability. Together, these data indicated 
that the patient variants lowered the functional levels of PRMT1 
or its activity, consistent with a LoF effect.

Discussion
We report on 10 years of genetic aetiology analyses in 1877 families 
with dystonia, integrating careful selection of eligible patients in
cluding extremely long cases in search of a diagnosis, WES, WGS, 

Figure 7 Discovery and functional characterization of de novo variants in PRMT1. (A) PRMT1 variants (NM_001536.5) detected in four patients affected by 
neurodevelopmental phenotypes with or without dystonia mapped to the PRMT1 protein sequence (black, top). An additional PRMT1 variant reported in 
a large study of de novo mutations in NDDs60 is in grey (bottom); a gnomAD control variant40 included in the in vitro assays is in blue (bottom). The ca
nonical functional region is highlighted according to UniProt.87 (B) Regional missense constraint over PRMT1, visualized via the MetaDome tolerance 
landscape server.88 The relative positions of patient variants depicted in A are indicated on PRMT1 NP_938074.2, corresponding to the alternative tran
script NM_198318.4 (MetaDome analysis not available for NM_001536.5). The variants were predicted to affect missense mutation-intolerant regions. 
(C) 3D dimer representation of PRMT1 (PDB: 6NT2) with mutated residues indicated; our variants (black boxes) were localized in the vicinity of the cata
lytic core and in the C-terminal β-barrel domain89; a magnified view of the region near residue Arg345 is depicted, illustrating the close spatial relation
ship between this mutated site and the binding pocket for PRMT1’s cofactor S-adenosyl methionine (a synthetic inhibitor of this pocket is shown in 
stick representation).90 The association with histones is illustrated, linking the identified disorder to the family of epigenetic-regulation defect syn
dromes, similarly to KMT2B-related dystonia.91 (D) Representative immunoblots showing protein expression levels of normal control PRMT1 and mu
tant forms and bar plots for quantification. The here-identified variants p.Ala249Ser and p.Glu291Lys as well as the variant p.Gly333Ser from a 
published NDD cohort60 reduced PRMT1 stability, indicating decreased functional PRMT1 levels in the carrier individuals. Stable expression was not 
significantly altered for PRMT1 proteins carrying the patient variant p.Arg345Trp or the gnomAD variant p.Val260Ile.40 PRMT1 protein intensities 
were normalized to RecA. All analyses were performed in triplicate (each data-point indicates a biological replicate; see also Supplementary Fig. 
10), and results are shown as mean ± standard deviation represented by error bars. Statistical analysis was performed by Student’s t-test. (E) 
Enzymatic assay results for the PRMT1 missense substitutions, showing diminished activity compared with the normal control for the 
dystonia-associated variant p.Arg345Trp, but not for p.Ala249Ser, p.Gly333Ser,60 and p.Val260Ile (gnomAD40). Means ± standard deviation are plotted, 
and statistical significance was determined by Student’s t-test. gnomAD = Genome Aggregation Database; NDD = neurodevelopmental disorder.
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adjunctive testing by other ‘omics’ modalities and data-sharing 
networks. The findings in aggregate showed that our concentration 
of expertise in investigating patients with an unmet diagnostic 
need provided a rich resource for elucidating the monogenic back
ground of dystonia. WES performed by us achieved a cumulative 
diagnostic rate of 21.7% (396/1825), whereas WGS, dynamically 
combined with proteomic, transcriptomic and gene-discovery ex
periments, contributed to another 46 diagnoses (45/305 index pa
tients, 14.8%). This investigation serves to highlight the potential 
of WGS and additional multi-omic analyses to improve insights 
into heterogeneous disease causes in patients with more severe 
forms of dystonia. Our experimental set-up allowed us to show a 
diagnostic uplift in such a subcohort characterized by higher levels 
of phenotypic complexity. Although many studies support the role 
of unbiased genome-wide approaches as a cornerstone for use in 
molecular diagnostics,16,22,33 the benefit of WGS (and multi-omics) 
in unselected cohorts of WES-naive individuals with dystonia and 
patients with milder dystonic presentations remains to be ex
plored. We appreciate that a lower aetiologic yield of advanced test
ing would be anticipated in the broader dystonia population.

Our present work had several strengths and points of difference 
compared with prior studies: (i) we established the utility of multifa
ceted molecular analysis strategies among families with a diverse 
range of dystonic syndromes on a scale far beyond any previously 
published cohort;93 (ii) we showcase that elevation to WGS with sim
ultaneous survey of multiple variant types represents an effective 
approach to diagnosis in dystonic patients for whom WES-based 
testing was unrevealing; (iii) we demonstrate that systematic imple
mentation of proteomics is valuable for the interpretation of genom
ic findings in dystonia and can provide an additional increase in 
diagnostic yield of WGS [6/70 WGS-inconclusive index patients 
(8.6%), plus one reanalysed case; Table 1 and Supplementary 
Table 4]; and (iv) we expand the repertoire of epigenetic gene-related 
dystonia by online matchmaking and functional validation.

We sought to assess the added value from scrutiny of incremental 
numbers of WES datasets of patients from a wide spectrum of geo
graphical origins. We found that the proportion of overlapping genes 
identified at different enrollment cut-offs in our study was consider
ably small [16.6% (34/205) for 20197 versus the period 2020–2024], sug
gesting that gene identification in dystonia will continue to 
meaningfully improve as cohort sizes grow. Our data reappraised 
the prevalence of dystonia-associated variants in neurodevelopmen
tal genes,94 discoverable across the whole age spectrum, including 
adults with broadened genotype-phenotype correlations for ANK2 
and CHD3. The observations amplified evidence predicting that hun
dreds, if not thousands of developmentally important genes may 
have the potential to be associated with dystonia.13,94,95 Further, our 
experience with the large WES cohort implied that, in the future, it 
may be unlikely to find major high-penetrance genetic factors within 
coding regions shared by multiple undiagnosed patients, but rather a 
large residuum of contributing ultra-rare aetiologies will remain to be 
unravelled.

Follow-up investigations of the whole assayable genome allowed 
for diagnostic improvements that support the adoption of WGS after 
WES in unexplained cases with dystonia. WGS offered enhanced 
benefit by uncovering a wide set of previously unidentified or unprior
itized CNVs/SVs (14 new diagnoses) in addition to WES-ignored SNVs 
and indels (13 diagnoses), and our WGS-based workflow enabled de
termination of the role of pathogenic MT variants in dystonia (four 
diagnoses), which has never been directly explored.96 Moreover, we 
were surprised to identify seven index patients (7/305, 2.3%) with 
STR pathologies on WGS data, pointing to an underreported 

contribution of repeat-expansion disorders to dystonia causation.97,98

Our results indicated that the boundary between dystonia and ‘clas
sical’ expressions of STR-related diseases such as muscle weakness 
(e.g. in PABPN1-associated muscular dystrophy) or ataxia (e.g. in 
CSTB-related ULD) can be blurred, highlighting the difficulty of diag
nosing rare multisystem neurologic disorders clinically.99 Although 
our patients with STR-associated diagnoses had neurologic features 
characteristic of the respective conditions, dystonia was observed as 
a leading clinical abnormality in all these cases and was a main reason 
for inclusion in the WGS analysis programme. We performed an array 
of resource-intensive post hoc validation tests for reported STRs, stres
sing the need for further studies to reach consensus on STR screening 
and validity assessments in WGS experiments.39

In conditions that evaded detection with the sole application of 
WGS, gene-agnostic proteomics emerged as an important driver of 
diagnostic success in dystonia. First, identification of expression de
fects increased the diagnostic certainty of missense and indel var
iants, such as frameshift mutations in regions with low sequencing 
quality scores. We were unable to identify and/or validate the re
ported 23-bp duplication in IRF2BPL (Fig. 5A) through other analytic 
strategies including WES and Sanger testing, highlighting the advan
tage of our combined WGS-proteomics approach over more trad
itional techniques. In the case of the SLC16A2 missense variant that 
we re-classified on the basis of proteomics (Fig. 5C), we note that a 
comparison of SLC16A2-protein expression levels between our stud
ied patient and confirmed cases of Allan–Herndon–Dudley syndrome 
was not possible because positive-control samples were unavailable 
to us; nevertheless, our proteomic result guided the successful 
diagnostic outcome, as it was decisive for the initiation of ancillary 
evaluation of endocrinological parameters and complemented the 
clinico-molecular picture of SLC16A2 deficiency. Second, we bench
marked the proteomic assay as a robust tool to find dystonic patients 
with disease-associated intronic variants resulting in reduction of 
protein levels, overcoming pitfalls of conventional WGS analyses 
that do not decipher functional impact.18,21,22 It is within reason to 
expect that proteomics will efficiently improve diagnostics of 
dystonia in parallel to other omics implementations such as 
RNA-seq.20,29 Our study demonstrates how implementation of pro
teomics can expand the capabilities to perform efficient molecular 
analysis in a collection of prioritized patients. However, it should be 
emphasized that the diagnostic gains of such an approach in indivi
duals with more common types of dystonia such as adult-onset iso
lated dystonia are unknown. In time, multi-omic studies are likely to 
become more broadly used as workflows will be improved and costs 
will continue to fall, which may enhance our knowledge about testing 
indications. Currently, one reasonable approach could be to consider 
the use of WGS plus multi-omics in patients with dystonic syn
dromes that are the most likely to be caused by single-gene disorders.

Rigorous candidate-gene prioritization informed by knowledge 
of molecular pathways15,26 allowed us to pursue case-matching 
and characterization of a novel genetic aetiology for dystonia: the 
similar clinical manifestations of the carrier individuals and the 
functional results showing a loss-of-function mechanism provided 
conclusive support for the implication of PRMT1 variants in a 
Mendelian phenotype with dystonia, reinforcing the connection 
between histone methyltransferase defects and neurodevelop
mental disease.13,60

All positive results from WGS and WGS combined with proteo
mics informed genetic counselling. Many findings ended long jour
neys to diagnosis [diagnostic delay of >5 years in 72.7% (32/44) of 
index patients], with pronounced duration in individuals carrying 
disease-causing STRs and non-coding variation (average delay of 
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11 years). Moreover, the established diagnoses aided in making care 
decisions and suggested tailored management for 29 families (29/ 
44, 65.9%; Supplementary Table 7). In light of prospects for mutation- 
specific therapies, we valued diagnoses related to splice-altering var
iants in SPG11 and ATM, uniquely identified by WGS with integration 
of proteomics and RNA-seq (Fig. 6A and C): antisense oligonucleo
tides acting via splicing modulation are under development for these 
genes.100 Specifically, the identification of deep intronic variants 
causing ataxia-telangiectasia may enable eligibility for a trial with 
targeted suppression of ATM cryptic exonization.101

There were weaknesses in our study: we acknowledge that our co
hort still needs to include more patients from as-yet underrepre
sented populations.102 Short-read WGS, as applied by us, has 
limitations in identifying certain variant types,20 and the study was 
not primarily and, therefore, not perfectly designed to compare the 
diagnostic utility between WES and WGS. Fibroblast proteomics re
quired invasive biopsies, and the approach had limited detection cap
acity for 37% of the dystonia-relevant gene products (products 
detected in <50% of samples).23 The lack of expression of 
brain-specific disease genes and other confounding cellular events in
cluding tissue-dependent alternative splicing or alternative cleavage 
of transcripts represent obstacles in integrating fibroblast-based pro
teomics and RNA-seq into a streamlined diagnostic process for all pa
tients. Future innovative approaches such as diagnostics of fibroblasts 
subjected to neural transdifferentiation103 or clustered regularly in
terspaced short palindromic repeat (CRISPR)-mediated transcription
al activation104 may help to further enhance our abilities to investigate 
the functional impact of genomic variants; however, expression- 
defect profiling alone would still be unable to assess some mutational 
consequences such as gain of protein function. Finally, our gene- 
sharing strategies were imperfect since some ‘weaker’ candidate 
loci and variants, e.g. dominant alleles inherited from asymptomatic 
parents, were not elected for submission to data-sharing services.

Overall, we demonstrate for a multinational cohort meticulously 
studied by sequencing and proteomics that a precision genetics ap
proach delivered in a clinical–academic format can yield a sizable 
rate of accurate diagnoses for dystonia-affected families. Failure to 
make these diagnoses would have led to missed opportunities for op
timized care, including lack of qualification for upcoming tailored in
terventions such as treatment with antisense technologies.100,105 Our 
outcome illustrating the benefits of WGS and multi-omic tests for 
difficult-to-diagnose patients may serve as a roadmap for reconsider
ation of diagnostic algorithms, paving the way for innovative strat
egies to uncover the elusive genetic basis of dystonia.
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